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Abstract—Recently LiDAR-camera systems have rapidly
emerged in many applications. The integration of laser range-
finding technologies into existing vision systems enables a more
comprehensive understanding of 3D structure of the environment.
The advantage, however, relies on a good geometrical calibration
between the LiDAR and the image sensors. In this paper we
consider visual odometry, a discipline in computer vision and
robotics, in the context of recently emerging online sensory cali-
bration studies. By embedding the online calibration problem into
a LiDAR-monocular visual odometry technique, the temporal
change of extrinsic parameters can be tracked and compensated
effectively.

I. INTRODUCTION

Nowadays LiDAR-integrated vision systems are pervasive
in a wide range of real world applications. Advanced driver
assistance systems [1], autonomous driving, navigation [2],
[3], and scene modeling are just a few examples among
them. A good integration of a LiDAR scanner into a vision
system heavily relies on a set of accurately calibrated extrinsic
parameters. These parameters specify how laser measurements
are cast to the camera’s coordinate system, in a way that
the vision system can benefit from the highly accurate depth
provided by the laser scanning technology.

A geometric calibration procedure can either be offline
(e.g. [4], [5]) or online (e.g. [6], [7], [8], [9]), depending on
the available time and setup. Offline calibration of LiDAR-
camera systems have been well studied in the last decade.
Such a calibration procedure is deployed in a controlled
environment with the use of one or many referenced targets
with known geometry for determining the relative pose of the
LiDAR sensor with respect to a vision system. Issues such as
mechanical vibration and temperature change may decrease
the performance of the calibrated extrinsic parameters over
time, after the system goes online and starts to operate. In
this case, an online calibration strategy needs to be deployed
to constantly verify the parameters and make adjustments
accordingly. The process is also known as recalibration, and is
usually done automatically on-site with no user intervention.

Existing online calibration techniques are based, for exam-
ple, on using mutual information (MI) maximisation together
with LiDAR scans. The underlying idea is that, given a set of
optimal extrinsic parameters, a LiDAR scan, once projected
onto an image, must have some of its properties best correlated

(e.g. using MI maximisation) to the imagery information.
Figure 1 shows an example of maximised MI, which maps
high intensity LiDAR points onto bright pixels Such an idea
might fail when 3D structure of the scene is not taken into
account when a laser point is associated with a pixel. As shown
in the same figure, some occluded points are wrongly mapped
to image pixels. This suggests that a recalibration algorithm
corrects the extrinsics in a way that a better correlation is
achieved.

Visual odometry, on the other hand, provides promising
results for the recovery of camera trajectories from video se-
quences [10]. The development of visual odometry traces back
to the early 1980’s. Nowadays we have maturity of a variety of
computer vision disciplines including stereo matching, optical
flow computation, and feature tracking. This delivers a highly
accurate estimation of a camera’s ego-motion. In general, a
state-of-the-art algorithm is capable to achieve a drift error
within 1% in real-time along a long travel distance up to a
few kilometres [11] .

In this paper we first propose a LiDAR-engaged visual
odometry framework. Based on the framework, we also de-
velop an online strategy to automatically track and correct
the change of extrinsic parameters. The strategy is novel
and different to any previous work; it takes image-structure
consistency into account. Inheriting from the underlying vi-
sual odometry framework, our online calibrator evaluates the
accuracy of the parameters.

The rest of this paper is organised as follows. Section II
reviews some recently proposed online calibration techniques.

Fig. 1. Example of maximised MI. The projection of LiDAR points before
(left) and after (right) the adjustment of extrinsic parameters is colour-coded
by their intensity readings. The optimisation wrongly associates occluded
points behind the car’s back window.



Section III explains the basics of our LiDAR driven visual
odometry. Section IV proposes a novel visual odometry-driven
solution to the online calibration problem. Experimental results
and studies are given in Section V. Section VI concludes.

II. RELATED WORK

The scope of the proposed method crosses two domains,
namely visual odometry and online LiDAR-camera calibra-
tion. As the former has already been extensively studied for
decades, in this section we discuss only online calibration
techniques. For a comprehensive review of the development
on visual odometry, readers are referred to [10].

For one of the early attempts to automatically find extrinsic
parameters between a LiDAR and a camera system, see [6].
The work aligns LiDAR frames to camera images by contour
matching. The edge points in each laser scan are identified and
projected onto the image. The extrinsic parameters are then
adjusted accordingly to improve the alignment of projected
edge points to object contours detected in images.

A similar idea is proposed and verified in later work in [7].
An objective function is defined to capture the correlation of
edge points and image edges. To instantiate such an objective
function, edges are detected in an image. An inverse distance
transform (IDT) is then applied on the edge image to produce
an energy map. In the LiDAR domain, depth gradients are
calculated and associated to each 3D measurement. Those
measurements are then projected onto the IDT to find the
associated energy, taking image and depth gradients into
account. The summation of all the energy is then used to
evaluate the fitness of hypothetic extrinsic parameters. Optimal
parameters are determined by means of energy minimisation.
To avoid associating occluded points to wrong pixels, [7] uses
the 2D topology of the multi-layer LiDAR systems to filter out
non-convex points. In some scenarios, we found that edges,
which were due to image textures or shadows, were wrongly
used as targets. This is not desired as these edges do not reflect
depth discontinuities of scene structures.

In more recent work, [9] demonstrates how the change
of extrinsics can be successfully identified and compensated
by means of MI maximisation. The approach projects laser
points into an intensity image, then uses these points’ intensity
readings from the LiDAR system plus the associated image in-
tensities to compute the MI, which represents the dependency
of data from different sensors. A high MI value is believed to
indicate that the sensors are well modeled by the extrinsics.
The authors also propose a sampling strategy to give a
probability estimation on the extrinsic parameters’ optimality.
Occlusions, however, are not addressed in their paper. In our
experiments we also found that image shadows may provide
incorrect hints that guide the extrinsics’ adjustment into a
wrong way.

To deal with occlusions and shadows a stereo camera setup
could be leveraged to acquire pixel-wise depth estimates which
could then be used to identify inconsistent LiDAR projections.
In this work we address such issues in a different way, without
the requirement of an additional camera. The proposed method

is inspired by the principle of visual odometry, which relies on
good correspondences between scene structures and imagery
data to deliver accurate motion estimates. The key concept is
to use the ego-motion estimation as a guide to evaluate the
correctness of LiDAR-image correspondences, and in turn the
hypothetic extrinsic parameters. To our best knowledge, using
visual odometry for online sensory calibration has never been
reported before elsewhere.

III. VISUAL ODOMETRY AND LIDAR SYSTEMS

Recent research identified the potentials of LiDAR systems
to dramatically boost the performance of odometry under
challenging conditions over conventional vision techniques. In
this section we first illustrate principles of visual odometry
techniques. This is followed by a demonstration of a LiDAR-
enhanced strategy.

Theory of Visual Odometry. The motion of a camera
can be recovered given a set of correspondences from two
consecutive frames. Let χ be an image feature, ρk(χ) ∈ R2

its image coordinates, and gk(χ) ∈ R3 its 3D coordinates in
frame k.

The motion (Rk, tk) of the camera, where Rk ∈ SO(3)
is the rotation matrix and tk ∈ R3 the translation vector
from frame k to k + 1, can be determined in different
ways, depending on the choice of correspondence types. In
the 3D-to-3D case, (Rk, tk) is solved immediately from a
set of Euclidean correspondences gk(χi) ↔ gk+1(χi) using
Horn’s analytical solution [15]. This case is not preferable
for the computer vision community as the 3D coordinates are
usually measured from a disparity map, which scales errors
in a nonlinearly anisotropic way once converted to Euclidean
space.

For a stereo setup, the state-of-the-art approach uses 3D-
to-2D correspondences to estimate camera motion by solving
the perspective-n-point (PnP) problem. Given a set of corre-
spondences gk(χ)↔ ρk+1(χ), it finds the optimal parameters
(R, t) that minimise the sum-of-square errors between each
projected feature and its observation. This is modeled by the
re-projection error function

φRPE(R, t) =
∑
i

‖ρk+1(χi)− π(Rgk(χi) + t)‖2Ωi
(1)

where π : R3 → R2 is the camera projection function and
Ωi ∈ R2×2 is the error covariance matrix of feature χi. The
optimal solution of Eq. (1) can be approached by any nonlinear
least-square solver; the Levenberg-Marquardt algorithm is one
of the most popular choices [18].

In the monocular case where the Euclidean measurement
g(χ) is not available, the epipolar condition is adopted instead.
It is possible to algebraically recover camera motion purely
from 2D correspondences ρk(χ) ↔ ρk+1(χ), up to four
candidate solutions along with scale ambiguity (i.e. the norm
of t remains unknown). Ego-motion estimation is based on
minimisation of the sum-of-squares epipolar error

φEPI(R, t) =
∑
i

∥∥y>i,k+1 · [t]×R · yi,k
∥∥2

(2)



where [·]× is the skew-symmetric 3 × 3 matrix form of a
normalised vector, and yi,k are the homogeneous coordinates
of the i-th feature’s canonical coordinates in frame k, with

yi,k = K−1

[
ρk(χi)

1

]
(3)

where K is the 3× 3 camera matrix.
Existing visual odometry frameworks deploy a variety of

disciplines, including feature matching and optical flow com-
putation, for updating function ρ and to maintain good tracking
of features; stereo matching or triangulation techniques are
used to implement function g. The next subsection discusses
some alternative solutions which incorporate LiDAR range
data.

LiDAR-enabled Visual Odometry. Few LiDAR-enabled
visual odometry systems were proposed in recent years. These
systems take the advantage of accurate laser scanning and
outperform conventional vision-based odometry methods. By
early 2016, top-ranked odometry on the KITTI benchmark
website [11] is dominated by LiDAR-based odometry (e.g.
[12], [13], [14]).

A straightforward implementation of a LiDAR-engaged
visual odometry system is to use laser-rendered depth maps
for replacing those computed from stereo images. Laser points
are projected on the image plane and triangulated to produce
an up-sampled dense depth map (see Fig. 2 for an example).
To enhance the resolution of the rendered depth map, multiple
scans are accumulated and aligned using the estimated ego-
motion [13].

An alternative strategy is to use the projections of laser
points to establish initial features and start to track these
features to assemble inter-frame 3D-to-2D correspondences.
Let Lk(χ) be the laser measured 3D coordinates of feature
χ in the k-th LiDAR frame. We redefine the Euclidean
measurement function

gk(χ; Γ, τ) = ΓLk(χ) + τ (4)

where g is now parametrised over extrinsic parameters Γ ∈
SO(3) and τ ∈ R3. The image coordinates of χ in frames k
and k + 1 are then, respectively, decided by

ρk(χ) = π [gk (χ; Γ, τ)] (5)

and
ρk+1(χ; Γ, τ) = νk(ρk) (6)

where an image feature transfer function νk : R2 → R2 is
introduced. The function can be implemented using an optical
flow technique or a point-tracking algorithm (e.g. the KLT
algorithm [16]). Following these formulations, Eqs. (1) and (2)
are now parametrised by the extrinsic parameters as well. This
defines an embedded optimisation problem when parameters
(Γ, τ) are the considered variables. The framework is depicted
by Fig. 3. In Section IV we study how such an embedded
structure can be used to solve the online calibration problem.

Implementation Details. LiDAR-aided PnP ego-motion
estimation, described previously, needs to be enhanced when

Fig. 2. Example of dense depth map from up-sampled LiDAR data.

applied to real-world sequences where non-stationary features
and noisy tracking are present. In our implementation, image
feature detection and extraction are performed independently
from the LiDAR-engaged framework. For distinguishing the
features inducted either from a projection of LiDAR points
or directly detected in the image, we use χ̂ for denoting the
latter ones. These image features are then temporally tracked
in feature space.

To reject non-stationary image features, a robust least-
median-of-squares (LMedS) estimator is adopted to compute
the fundamental matrix from tracked feature correspondences
χ̂k ↔ χ̂k+1. The fundamental matrix is then used to identify
outliers from the correspondences χ̂k ↔ χ̂k+1, which are
yielded by ν, by means of the Sampson error [18]

ε(x,x′; F) =
(x′Fx)

2

(Fx)2
1 + (Fx)2

2 + (F>x′)2
1 + (F>x′)2

2

(7)

where x and x′ are the homogeneous coordinates of two
tracked features, F is the estimated fundamental matrix, and
(Fx)2

i is the square of the i-th entry of Fx.
The correspondences χ̂k ↔ χ̂k+1 are also used to better

condition the objective function φRPE. The epipolar geometry-
derived regularisation term is defined as

φ̂EPI(R, t) =
∑
j

∥∥ε(χ̂j,k, χ̂j,k+1; K−>[t]×RK−1)
∥∥2

(8)

Fig. 3. Illustration of an alternative LiDAR-VO strategy considered in this
paper. The framework is based on the PnP ego-motion estimation technique
and robust feature tracking algorithms.



The term is then combined with the objective φRPE to yield a
regularised objective function

Φ(R, t) = φRPE(R, t) + λ φ̂EPI(R, t) (9)

where λ controls the importance of a penalty for a case that
(R, t) violates the epipolar condition constrained by χ̂k ↔
χ̂k+1.

Our implementation of the described monocular LiDAR-
enabled visual odometry technique is tested on sequences
from the KITTI dataset [11]. We choose SURF features to
actualise the introduced outlier rejection and regularisation
techniques which together achieve an average drift error within
2%. Figure 4 shows experimental results of a street-side
sequence. By minimising only φRPE without the use of χ̂, the
estimated trajectory deviates from the GPS/IMU data 4.5%
after the vehicle traveled 200 m. With the outlier rejection
using fundamental matrices from χ̂k ↔ χ̂k+1, the drift error
reduced to 3.3%. By adding the epipolar regularisation term,
the error further reduced to 1.6%, with λ set to 0.5. The
threshold of the Sampson error is set to 0.05 pixel, above
which a correspondence is considered to be an outlier.

IV. VISUAL-ODOMETRY DRIVEN ONLINE CALIBRATION

The proposed LiDAR-enabled visual odometry framework
is not only an accurate ego-motion estimator but also a
good tool for finding optimal extrinsic parameters. This is
based on a straightforward idea that, if the LiDAR-camera
extrinsics are far from the true values, the performance of the
estimated ego-motion must be negatively affected. The idea
is supported by our experimental findings. Figure 5 shows
average drift errors over one of the test sequences with respect
to shifted ground truth extrinsics along x− and y−axes. With a
clear convexity, the minimum is achieved when the calibrated
extrinsics are not contaminated (i.e. ∆τx = 0 and ∆τy = 0).
Such linkage allows us to embed the ego-motion estimation
problem into online calibration which in turn leads to a bilevel

Fig. 4. LiDAR-VO framework results. The epipolar constrained objective
function with outlier rejection strategy achieved significantly better accuracy
in ego-motion estimation.

optimisation structure. A similar solution to the structure-from-
motion problem is discussed in the early development of a
bundle adjustment technique [17], where the optimal scene
structure recovery is embedded in the ego-motion optimisation
process, or alternatively in reverse order.

Bilevel optimisation has been studied since the pioneering
efforts on game theory by the German economist Heinrich
Freiherr von Stackelberg in 1934. Unfortunately, due to its
nested nonlinear structure, solving a bilevel optimisation prob-
lem still remains hard today. Next we propose a technique to
ease the difficulty of solving such a problem in the context of
an online calibration problem by introducing data constraints.

Embedded Optimisation Problem. The regularised ob-
jective function Eq. (9) is parameterized over the extrinsics
(Γ, τ), which are now considered adjustable. We formulate
the embedded optimisation problem as

min
Γ,τ

Ψ(Γ, τ ; R, t) s.t. (R, t) ∈ arg min Φ(R, t; Γ, τ) (10)

where Ψ is an objective function that evaluates the fitness of
hypothetic extrinsics, given an optimal ego-motion estimate.

A good choice of Ψ is to use the drift of the estimated
ego-motion. However, such metric is not directly measurable
without knowing the ground truth of camera motion. Alterna-
tively, we perform a backward consistency check by evaluating
the inverse re-projection error function

φ̄RPE(R, t) =
∑
i

∥∥ρk(χi)− π(R>gk+1(χi)−R>t)
∥∥2

Ωi

(11)
which projects LiDAR measurements from frame k + 1 as
features and compares their back-traced image points with
their projections in frame k using the inverse of (R, t).

The effectiveness of such a measurement is verified by
experiments which showed a significantly positive connection
between Eq. (11) and the drift error by correlation analysis.
Note that we avoid using a forward re-projection error as

Fig. 5. Visualisation of ego-motion drift errors with respect to the shifted
extrinsic parameters along x− and y−axis. We applied the proposed LiDAR-
VO strategy with modified extrinsics τ ′x = τx + ∆τx and τ ′y = τy + ∆τy .



defined in Eq. (1), since it is already optimised by solving
the inner problem. Figure 6 shows correlation coefficients of
the forward and backward re-projection errors with respect
to the drift errors of a test sequence. We used 144 sets of
extrinsics to calculate the errors for each frame. The results
are then accumulated over time to yield a better estimate
of the Pearson product-moment correlation coefficients. The
experiments suggest that the backward re-projection error,
which is not directly optimised in the inner problem, presents a
stronger connection to motion drift compared to the optimised
forward re-projection error.

Despite being effective, the inverse re-projection function is
ill-posed, as multiple local optima are found. In the following
subsections we introduce data constraints to improve the con-
dition of Ψ, which in turn allows us to deploy computational
inexpensive solvers to solve the embedded problem.

Intensity Constraint. Commercial LiDAR systems return
not only range data but also the strength of sensed laser pulses,
which can be converted into intensity readings. To take into
account photometric constraints, we use intensity data from the
camera and the LiDAR system. We adopted the MI technique
proposed in [9]. The MI of two signals is defined as

MI(a,b) =
∑
i

∑
j

p(ai,bj) log

(
p(ai,bj)

p(ai)p(bj)

)
(12)

where p(ai) and p(bi) are marginal distribution functions of
a and b respectively, and p(ai,bj) is the joint probability
function.

In the context of a LiDAR-camera setup, we have Rk for
the intensity readings and Ik for the intensity image of frame
k. Applying Eq. (12) to associate the intensity reading of a
feature χ and the image intensity value at the location of its
projection, it yields

φMI(Γ, τ) =
1

MI {Rk(χi), Ik[ρk(χi)]}
(13)

Our implementation uses a discretized kernel method to es-
timate the probability distribution functions. The estimation
is efficiently done by convolving 1D and 2D histograms built
from a and b with a chosen kernel function which is Gaussian
in our work.

Discontinuity Constraint. An accurate set of extrinsic
parameters is also supported by a good alignment of edge

Fig. 6. The plot illustrates the correlation between forward and backward
re-projection errors with respect to the drift of ego-motion.

points (i.e. from the LiDAR point cloud to the image edges).
We follow an approach similar to [7]. For each LiDAR point,
we calculate its edginess by comparing its depth to the two
nearest neighbors. Considering a feature χi and its nearest
neighbors χ′i and χ′′i , it defines

δk(χi) = max{zk(χ′i)− zk(χi), zk(χ′′i )− zk(χi), 0}γ (14)

where z is the function to retrieve a feature’s depth in frame k,
and γ > 0 is the smoothness factor of the edginess transform.
In this paper we set γ to 0.5, as suggested in [7]. The
alignedness of the edge points to the image edges is then
denoted by

φEG(Γ, τ) =
1∑

i δk(χi)Jk[ρk(χi)]
(15)

where Jk is the inverse distance transform of the binary edge
image of Ik. Note that the formula listed here is the inverted
version of its original definition, as authors in [7] solved
the extrinsics by energy maximisation while in this work we
consider minimisation problems.

Cost Aggregation and Optimal Solutions. For improving
the smoothness and convexity of the backward re-projection
error, we add data constraints. The aggregated objective func-
tion is then defined as

Ψ(Γ, τ ; R, t) = φ̄RPE(R, t; Γ, τ) + αφMI(Γ, τ) + βφEG(Γ, τ)
(16)

where α and β, respectively, control the penalties for violating
the intensity and the edge-alignedness constraints.

The inner problem of optimising Φ as defined by Eq. (9)
is essentially a least-squares minimisation problem which is
efficiently solved using the Levenberg-Marquardt algorithm in
our work. The outer problem, after being better conditioned,
is solved by a gradient-descent search technique. The process
is depicted by Fig. 7.

V. EXPERIMENTS

The proposed online calibration technique has been tested
using street-side sequences from the KITTI dataset [11].
The extrinsics are initially contaminated by a synthetic rigid
transformation. The magnitude of the rotational disturbance
is set to 2◦, and the norm of the translational noise is set
to 10 cm. The proposed method is then applied to adjust

Fig. 7. Process of our online parameter adjustment strategy.



Fig. 8. Adjustment of extrinsics through first 60 frames.

the contaminated extrinsics through the sequence, using only
the left greyscale camera. For the aggregation of Ψ, we used
α = 0.5 and β = 0.5. To evaluate the performance of the
LiDAR-VO approach, we also applied online calibration using
only the edge alignment objective φEG (based on [7]) and the
intensity MI objective φMI (based on [9]), respectively. The
adjusted parameters are compared with ground truth, which
is obtained using offline calibration as proposed in [5]. The
differential motion is calculated to evaluate the performance
of each technique, and the Euler angles [i.e. pitch (Γx), yaw
(Γy), and roll (Γz)] are derived from the rotation part.

The adjustment of extrinsics is plotted in Fig. 8. The figure
shows that all the tested techniques corrected the pitch angle
to values close to the ground truth in the first 15 frames, while
only the edge alignment approach and the proposed method
converged to yaw and roll angles properly. We found that the
high sensitivity of the vertical angular adjustment is due to
the sampling of the Velodyne LiDAR system, which span
the field of view of the camera very densely in horizontal
direction but only narrowly in vertical direction. Under such
circumstances, a little change in pitch greatly influences the
objective functions.

The experiment also shows that the VO driven approach
outperforms the other two in terms of translational parameter
adjustment. We inspected the derivatives of φEG and φMI with
respect to τ and found that they do not significantly influence
a prominent update in the gradient descent iterations, as a
change of several centimetres results in shifts under 1 pixel on
the projection of the LiDAR points. When the VO technique is
engaged, such small differences are captured in the ego-motion
estimation stage and provide meaningful hints to guide the
adjustment of parameters. The final extrinsic parameters are
listed in Table I. The offline calibrated parameters are provided

TABLE I
CALIBRATED EXTRINSIC PARAMETERS

Γx (◦) Γy (◦) Γz (◦) τx (cm) τy (cm) τz (cm)
φEG −89.7 −0.4 −89.6 −3.19 −3.46 −35.5
φMI −89.6 −2.2 −91.4 −3.04 −3.89 −35.6
Ψ −89.6 −0.1 −89.3 −2.79 −6.11 −28.3

Offline −89.6 0.0 −89.1 −0.41 −7.63 −27.2

as the ground truth for comparison.

VI. CONCLUSION

In this paper we proposed a novel online calibration solver
based on monocular LiDAR-enabled visual odometry. To ease
the difficulty of solving the bilevel optimisation, as intro-
duced by embedding ego-motion estimation into the online
calibration problem, data constraints are added. Being better
conditioned, the calibration can then be efficiently approached
using gradient approaches. Experimental results show that the
proposed method is able to re-estimate the extrinsic parameters
more effectively than existing methods.
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